titchmarsh theorem for jacobi dini-lipshitz functions

نویسندگان

mustapha boujeddaine

said fahlaoui

radouan daher

چکیده

our aim in this paper is to prove an analog of younis's theorem on the image under the jacobi transform of a class functions satisfying a generalized dini-lipschitz condition in the space $mathrm{l}_{(alpha,beta)}^{p}(mathbb{r}^{+})$, $(1< pleq 2)$. it is a version of titchmarsh's theorem on the description of the image under the fourier transform of a class of functions satisfying the dini-lipschitz condition in $l^{p}$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Titchmarsh theorem for Jacobi Dini-Lipshitz functions

Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...

متن کامل

Singular Weyl–Titchmarsh–Kodaira theory for Jacobi operators

We develop singular Weyl–Titchmarsh–Kodaira theory for Jacobi operators. In particular, we establish existence of a spectral transformation as well as local Borg–Marchenko and Hochstadt–Liebermann type uniqueness results.

متن کامل

On Dini and Approximate Dini Derivates of Typical Continuous Functions

In the thirties, Banach, Mazurkiewicz and Jarnnk found relations connecting Dini derivates of a typical continuous function on 0; 1] at all points of (0; 1). We prove, answering a question of K. M. Garg, that there are no further relations of this sort. An analogous result is proved also for approximate Dini derivates. The aim of this note is to present relatively simple proofs of these results...

متن کامل

On Periodic Matrix-Valued Weyl-Titchmarsh Functions

We consider a certain class of Herglotz-Nevanlinna matrix-valued functions which can be realized as the Weyl-Titchmarsh matrix-valued function of some symmetric operator and its self-adjoint extension. New properties of Weyl -Titchmarsh matrixvalued functions as well as a new version of the functional model in such realizations are presented. In the case of periodic Herglotz-Nevanlinna matrix-v...

متن کامل

generalization of titchmarsh&apos;s theorem for the dunkl transform

using a generalized spherical mean operator, we obtain a generalization of titchmarsh&apos;s theorem for the dunkl transform for functions satisfying the (&apos;; p)-dunkl lipschitz condition in the space lp(rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.

متن کامل

A Strong Szegő Theorem for Jacobi Matrices

We use a classical result of Gollinski and Ibragimov to prove an analog of the strong Szegő theorem for Jacobi matrices on l2(N). In particular, we consider the class of Jacobi matrices with conditionally summable parameter sequences and find necessary and sufficient conditions on the spectral measure such that ∑ ∞ k=n bk and ∑ ∞ k=n(a 2 k − 1) lie in l2 1, the linearly-weighted l2 space.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of nonlinear analysis and applications

ناشر: semnan university

ISSN

دوره 7

شماره 1 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023